Active learning surrogate models for the conception of systems with multiple failure modes
نویسنده
چکیده
Due to performance and certification criteria, complex mechanical systems have to take into account several constraints, which can be associated with a series of performance functions. Different software are generally used to evaluate such functions, whose computational cost can vary a lot. In conception or reliability analysis, we thus are interested in the identification of the boundaries of the domain where all these constraints are satisfied, at the minimal total computational cost. To this end, the present work proposes an iterative method to maximize the knowledge about these limits while trying to minimize the required number of evaluations of each performance function. This method is based first on Gaussian process surrogate models that are defined on nested sub-spaces, and second, on an original selection criterion that takes into account the computational cost associated with each performance function. After presenting the theoretical basis of this approach, this paper compares its efficiency to alternative methods on an example.
منابع مشابه
Reliability Analysis of K-Out-Of N: G Machining Systems with Mixed Spares and Multiple Modes of Failure (TECHNICAL NOTE)
This paper deals with the transient analysis of K-out-of-N: G system consisting of Noperatingmachines. To improve system reliability, Y cold standby and S warm standbys spares areprovided to replace the failed machines. The machines are assumed to fail in multiple modes. At leastK-out-of-N machines for smooth functioning of the system. Reliability and mean time to failure areestablished in term...
متن کاملعیبیابی سازهها با استفاده از شاخص تابع پاسخ فرکانسی و مدل جایگزین مبتنی بر الگوریتم ماشین یادگیری حداکثر بهینه شده
Utilizing surrogate models based on artificial intelligence methods for detecting structural damages has attracted the attention of many researchers in recent decades. In this study, a new kernel based on Littlewood-Paley Wavelet (LPW) is proposed for Extreme Learning Machine (ELM) algorithm to improve the accuracy of detecting multiple damages in structural systems. ELM is used as metamo...
متن کاملAn Investigation into the Pull-out Failure Mechanisms of Suction Caissons
This paper reports results from an investigation into the suction caissons failure mechanisms under vertical pull-out loads. An insight to the failure mechanisms of suction caissons paves the path for developing analytical solutions to their pull-out capacity. The numerical models of suction caissons have first been calibrated by and verified against several experimental data from other researc...
متن کاملMonte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System
We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Rel. Eng. & Sys. Safety
دوره 149 شماره
صفحات -
تاریخ انتشار 2016